Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.681
1.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38564334

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Caspase 1 , Escherichia coli Infections , Nucleoside-Diphosphate Kinase , Pyroptosis , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/pathogenicity , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Mice , Caspase 1/metabolism , Nucleoside-Diphosphate Kinase/metabolism , Nucleoside-Diphosphate Kinase/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/metabolism , Escherichia coli Infections/pathology , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Humans , Female , Urinary Bladder/microbiology , Urinary Bladder/pathology , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Signal Transduction
2.
Methods Mol Biol ; 2782: 137-146, 2024.
Article En | MEDLINE | ID: mdl-38622398

Leishmania, an intra-macrophage kinetoplastid parasite, modulates a vast array of defensive mechanisms of the host macrophages to create a comfortable environment for their survival. When the host encounters intracellular pathogens, a multimeric protein complex called NLRP3 inflammasome gets turned on, leading to caspase-1 activation-mediated maturation of IL-1ß from its pro-form. However, Leishmania often manages to neutralize inflammasome activation by manipulating negative regulatory molecules of the host itself. Exhaustion of NLRP3 and pro-IL-1ß result from decreased NF-κB activity in infection, which was attributed to increased expression of A20, a negative regulator of NF-κB signalling. Moreover, reactive oxygen species, another key requirement for inflammasome activation, are inhibited by mitochondrial uncoupling protein 2 (UCP2) which is upregulated by Leishmania. Inflammasome activation is a complex event and procedures involved in monitoring inflammasome activation need to be accurate and error-free. In this chapter, we summarize the protocol that includes various experimental procedures required for the determination of the status of inflammasomes in Leishmania-infected macrophages.


Inflammasomes , Leishmania , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Leishmania/metabolism , NF-kappa B/metabolism , Macrophages/metabolism , Interleukin-1beta/metabolism , Reactive Oxygen Species/metabolism , Caspase 1/metabolism
3.
PLoS One ; 19(4): e0299703, 2024.
Article En | MEDLINE | ID: mdl-38630707

Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.


Amino Acid Chloromethyl Ketones , Cognitive Dysfunction , White Matter , Animals , Mice , White Matter/metabolism , Brain/metabolism , Caspase 1/metabolism , Disease Models, Animal , Mice, Inbred C57BL
4.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38564364

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-18 , Macrophage Activation , Signal Transduction , Liver/metabolism , Ascorbic Acid , Sepsis/complications , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Article Zh | MEDLINE | ID: mdl-38660903

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Bilirubin , Chaperone-Mediated Autophagy , Microglia , Animals , Mice , Microglia/metabolism , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Cell Survival
6.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652763

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


CARD Signaling Adaptor Proteins , Inflammasomes , Optogenetics , Pyroptosis , Inflammasomes/metabolism , Optogenetics/methods , Animals , Humans , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Mice , Caspase 1/metabolism , Caspase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
7.
Immun Inflamm Dis ; 12(4): e1241, 2024 Apr.
Article En | MEDLINE | ID: mdl-38629728

BACKGROUND: Inflammation in adipose tissue, resulting from imbalanced caloric intake and energy expenditure, contributes to the metabolic dysregulation observed in obesity. The production of inflammatory cytokines, such as IL-1ß and IL-18, plays a key role in this process. While IL-1ß promotes insulin resistance and diabetes, IL-18 regulates energy expenditure and food intake. Previous studies have suggested that caspase-1, activated by the Nlrp3 inflammasome in response to lipid excess, mediates IL-1ß production, whereas activated by the Nlrp1b inflammasome in response to energy excess, mediates IL-18 production. However, this has not been formally tested. METHODS: Wild-type and caspase-1-deficient Balb/c mice, carrying the Nlrp1b1 allele, were fed with regular chow or a high-fat diet for twelve weeks. Food intake and mass gain were recorded weekly. At the end of the twelve weeks, glucose tolerance and insulin resistance were evaluated. Mature IL-18 protein levels and the inflammatory process in the adipose tissue were determined. Fasting lipid and cytokine levels were quantified in the sera of the different experimental groups. RESULTS: We found that IL-18 production in adipose tissue is independent of caspase-1 activity, regardless of the metabolic state, while Nlrp3-mediated IL-1ß production remains caspase-1 dependent. Additionally, caspase-1 null Balb/c mice did not develop metabolic abnormalities in response to energy excess from the high-fat diet. CONCLUSION: Our findings suggest that IL-18 production in the adipose tissue is independent of Nlrp3 inflammasome and caspase-1 activation, regardless of caloric food intake. In contrast, Nlrp3-mediated IL-1ß production is caspase-1 dependent. These results provide new insights into the mechanisms underlying cytokine production in the adipose tissue during both homeostatic conditions and metabolic stress, highlighting the distinct roles of caspase-1 and the Nlrp inflammasomes in regulating inflammatory responses.


Insulin Resistance , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Interleukin-18 , Caspase 1/genetics , Caspase 1/metabolism , Caspases/metabolism , Adipose Tissue/metabolism , Cytokines/metabolism , Lipids
8.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 197-203, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650132

Myocardial fibrosis is a common pathological manifestation that occurs in various cardiac diseases. The present investigation aims to reveal how DNMT1/lncRNA-ANRIL/NLRP3 influences fibrosis and cardiac fibroblast pyroptosis. Here, we used ISO to induce myocardial fibrosis in mice, and LPS and ATP to induce myocardial fibroblast pyroptosis. The results showed that DNMT1, Caspase-1, and NLRP3 expression were significantly increased in fibrotic murine myocardium and pyroptotic cardiac fibroblasts, whereas LncRNA-ANRIL expression was decreased. DNMT1 overexpression decreased the level of LncRNA-ANRIL while increasing the levels of NLRP3 and Caspase-1. Contrarily, silencing DNMT1 increased the LncRNA-ANRIL and decreased the levels of NLRP3 and Caspase-1. Silencing LncRNA-ANRIL increased the levels of NLRP3 and Caspase-1. The present findings suggest that DNMT1 can methylate LncRNA-ANRIL during the development of myocardial fibrosis and CFs cell scorching, resulting in low LncRNA-ANRIL expression, thereby influencing myocardial fibrosis and cardiac fibroblast pyroptosis.


Caspase 1 , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Fibroblasts , Fibrosis , Myocardium , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pyroptosis/genetics , Pyroptosis/drug effects , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Caspase 1/metabolism , Caspase 1/genetics , Fibroblasts/metabolism , Myocardium/pathology , Myocardium/metabolism , Mice , DNA Methylation/genetics , Male , Mice, Inbred C57BL
9.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38587472

The wound-healing process is a paradigm of the directed migration of various pools of stem cells from their niche to the site of injury where they replenish damaged cells. Two decades have elapsed since the observation that wounding activates multipotent hair follicle stem cells to infiltrate the epidermis, but the cues that coax these cells out of their niche remain unknown. Here, we report that Caspase-1, a protein classically known as an integral component of the cytosolic inflammasome, is secreted upon wounding and has a non-canonical role in the extracellular milieu. Through its caspase activation recruitment domain (CARD), Caspase-1 is sufficient to initiate the migration of hair follicle stem cells into the epidermis. Uncovering this novel function of Caspase-1 also facilitates a deeper understanding of the mechanistic basis of the epithelial hyperplasia found to accompany numerous inflammatory skin diseases.


Caspase 1 , Dermatitis , Hair Follicle , Stem Cells , Wound Healing , Animals , Mice , Caspase 1/metabolism , Cell Movement , Dermatitis/metabolism , Dermatitis/pathology , Hair , Hair Follicle/cytology , Hair Follicle/metabolism , Inflammation/metabolism
10.
Front Immunol ; 15: 1346878, 2024.
Article En | MEDLINE | ID: mdl-38590522

Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1ß and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.


Herpesviridae Infections , Virus Diseases , Humans , Inflammasomes/metabolism , Caspase 1/metabolism , Signal Transduction
11.
Mol Biol Rep ; 51(1): 412, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466466

PURPOSE: We investigated the role of lnc_AABR07044470.1 on the occurrence and development of acute ischemic stroke (AIS) and neuronal injury by targeting the miR-214-3p/PERM1 axis to find a novel clinical drug target and prediction and treatment of AIS. METHODS: The mouse AIS animal model was used in vivo experiments and hypoxia/reoxygenation cell model in vitro was established. Firstly, infarction volume and pathological changes of mouse hippocampal neurons were detected using HE staining. Secondly, rat primary neuron apoptosis was detected by flow cytometry assay. The numbers of neuron, microglia and astrocytes were detected using immunofluorescence (IF). Furthermore, binding detection was performed by bioinformatics database and double luciferase reporter assay. Lnc_AABR07044470.1 localization was performed using fluorescence in situ hybridization (FISH).Lnc_AABR07044470.1, miR-214-3pand PERM1mRNA expression was performed using RT-qPCR. NLRP3, ASC, Caspase-1 and PERM1 protein expression was performed using Western blotting. IL-1ß was detected by ELISA assay. RESULTS: Mouse four-vessel occlusion could easily establish the animal model, and AIS animal model had an obvious time-dependence. HE staining showed that, compared with the sham group, infarction volume and pathological changes of mouse hippocampal neurons were deteriorated in the model group. Furthermore, compared with the sham group, neurons were significantly reduced, while microglia and astrocytes were significantly activated. Moreover, the bioinformatics prediction and detection of double luciferase reporter confirmed the binding site of lnc_AABR07044470.1 to miR-214-3p and miR-214-3p to Perm1. lnc_AABR07044470.1 and PERM1 expression was significantly down-regulated and miR-214-3pexpression was significantly up-regulated in AIS animal model in vivo. At the same time, the expression of inflammasome NLRP3, ASC, Caspase-1 and pro-inflammatory factor IL-1ß was significantly up-regulated in vivo and in vitro. The over-expression of lnc_AABR07044470.1 and miR-214-3p inhibitor could inhibit the neuron apoptosis and the expression of inflammasome NLRP3, ASC, Caspase-1 and pro-inflammatory factor IL-1ß and up-regulate the expression of PERM1 in vitro. Finally, over-expression of lnc_AABR07044470.1 and miR-214-3p inhibitor transfected cell model was significant in relieving the AIS and neuronal injury. CONCLUSION: Lnc_AABR07044470.1 promotes inflammatory response to neuronal injury via miR-214-3p/PERM1 axis in AIS.


Ischemic Stroke , MicroRNAs , RNA, Long Noncoding , Rats , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , In Situ Hybridization, Fluorescence , Apoptosis , Caspase 1/genetics , Caspase 1/metabolism , Neurons/metabolism , Infarction/metabolism , Infarction/pathology , Luciferases/genetics , Muscle Proteins/genetics
12.
Am J Chin Med ; 52(2): 453-469, 2024.
Article En | MEDLINE | ID: mdl-38490806

Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.


Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Saponins , Triterpenes , Mice , Animals , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Caspase 3/metabolism , Sirtuin 1/metabolism , Gasdermins , Doxorubicin/adverse effects , Caspase 1/metabolism
13.
J Ethnopharmacol ; 328: 118056, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38490287

ETHNOPHARMACOLOGICAL RELEVANCE: Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS: SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS: The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1ß, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION: HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.


Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Escherichia coli , Interleukin-10 , Hedgehog Proteins , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Rats, Sprague-Dawley , Urinary Tract Infections/drug therapy , Urinary Tract Infections/pathology , Caspase 1/metabolism
14.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38506128

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Gasdermins , Neoplasms , Humans , Caspase 3/metabolism , Apoptosis , Signal Transduction , Mitochondria/metabolism , Neoplasms/metabolism , Caspase 8/metabolism , Caspase 8/pharmacology , Caspase 1/metabolism , Caspase 1/pharmacology
15.
J Ethnopharmacol ; 327: 118041, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38479543

ETHNOPHARMACOLOGICAL RELEVANCE: Allergic rhinitis (AR) is a prevalent nasal inflammatory disorder, and pyroptosis plays a crucial role in aggravating AR. Current medications for AR treatment still have deficiencies, and finding new agents is of great interest. Mahuang Fuzi Xixin decoction (MFXD), an ancient Chinese medicine, is now commonly used to treat AR, which has anti-inflammatory and immunomodulatory effects, but its underlying mechanism is unknown. AIM OF THIS STUDY: This study aims to evaluate the effects of MFXD on AR and explore its potential mechanisms in view of the regulatory effect on pyroptosis. METHODS: MFXD, Mahuang, Fuzi, and Xixin water extracts were analyzed using ultra high performance liquid chromatography-Orbitrap-high-resolution accurate mass spectrometry. In in vivo study, the effects of MFXD on AR treatment were evaluated in an ovalbumin-induced mouse model. Mice were administered saline (control and model groups), MFXD (1.375, 2.75 g/kg), and dexamethasone (2.5 mg/kg) for 13 days. AR symptoms were evaluated by blinded observers. Immunoglobulin E (IgE) and histamine levels were measured using enzyme-linked immunosorbent assays. Expression of pyroptosis-related proteins (NLRP3, ASC, Caspase-1 p10/p20, GSDMD-N and IL-1ß) in AR mouse nasal mucosa were estimated by immunohistochemistry. In in vivtro study, the effects of MFXD on pyroptosis were assessed in human nasal epithelial cells (HNEpCs) stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP), and incubated with MFXD (12.5, 25, and 50 µg/mL). Pyroptosis-related protein expression was measured by western blotting. RESULTS: Thirty-three compounds in MFXD were identified, including ephedrine, pseudoephedrine, higenamine, aconine, aconitine, benzoylmesaconitine, benzoylhypaconine and hypaconitine. In the in vivo study, oral taken of MFXD/dexamethasone significantly ameliorated AR symptoms, reduced swelling of the nasal mucosa, and decreased the levels of IgE and histamine in AR mice serum. MFXD/dexamethasone attenuated histopathological changes and reduced the expression of pyroptosis-related proteins in nasal mucosa, indicating the inhibitory effect on nasal epithelial pyroptosis. In the in vitro study, MFXD (50 µg/mL) significantly alleviated cytotoxicity, protected cells from swelling and rupture, and downregulated the expression of pyroptosis-related proteins in LPS/ATP-induced HNEpCs. CONCLUSION: MFXD suppressed nasal epithelial pyroptosis by inhibiting the NLRP3/Caspase-1/GSDMD-N signaling pathway, which alleviates AR. Our results offer valuable insights into potential AR therapies and provide evidence for the clinical utilization of MFXD to treat AR.


Diterpenes , Drugs, Chinese Herbal , NLR Family, Pyrin Domain-Containing 3 Protein , Rhinitis, Allergic , Mice , Humans , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Caspase 1/metabolism , Histamine , Lipopolysaccharides , Rhinitis, Allergic/drug therapy , Immunoglobulin E , Adenosine Triphosphate , Dexamethasone , Gasdermins , Phosphate-Binding Proteins
16.
Cytokine ; 178: 156568, 2024 Jun.
Article En | MEDLINE | ID: mdl-38471420

BACKGROUND: Laryngopharyngeal reflux (LPR) is one of the most common disorders in otorhinolaryngology, affecting up to 10% of outpatients visiting otolaryngology departments. In addition, 50% of hoarseness cases are related to LPR. Pepsin reflux-induced aseptic inflammation is a major trigger of LPR; however, the underlying mechanisms are unclear. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has become an important bridge between stimulation and sterile inflammation and is activated by intracellular reactive oxygen species (ROS) in response to danger signals, leading to an inflammatory cascade. In this study, we aimed to determine whether pepsin causes LPR-associated inflammatory injury via mediating inflammasome activation and explore the potential mechanism. METHODS: We evaluated NLRP3 inflammasome expression and ROS in the laryngeal mucosa using immunofluorescence and immunohistochemistry. Laryngeal epithelial cells were exposed to pepsin and analyzed using flow cytometry, western blotting, and real-time quantitative PCR to determine ROS, NLRP3, and pro-inflammatorycytokine levels. RESULTS: Pepsin expression was positively correlated with ROS as well as caspase-1 and IL-1ß levels in laryngeal tissues. Intracellular ROS levels were elevated by increased pepsin concentrations, which were attenuated by apocynin (APO)-a ROS inhibitor-in vitro. Furthermore, pepsin significantly induced the mRNA and protein expression of thioredoxin-interacting protein, NLRP3, caspase-1, and IL-1ß in a dose-dependent manner. APO and the NLRP3 inhibitor, MCC950, inhibited NLRP3 inflammasome formation and suppressed laryngeal epithelial cell damage. CONCLUSION: Our findings verified that pepsin could regulate the NLRP3/IL-1ß signaling pathway through ROS activation and further induce inflammatory injury in LPR. Targeting the ROS/NLRP3 inflammasome signaling pathway may help treat patients with LPR disease.


Laryngopharyngeal Reflux , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Pepsin A/metabolism , Signal Transduction , Inflammation/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism
17.
Aging (Albany NY) ; 16(6): 5077-5090, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503493

BACKGROUND: Osteoarthritis (OA) is the most common age-related joint disease, and the NLRP3-induced pyroptosis has been demonstrated in its progression. The upstream molecules or specific mechanisms controlling NLRP3 and pyroptosis in OA remain unclear. METHODS: Transcriptome sequencing was performed in the OA mice model, and the expression levels of differentially expressed genes were assessed by qRT-PCR. The cell model was constructed by IL-1ß-induced ATDC5 cells. The cell proliferation was examined using CCK-8 assay, and apoptosis was tested using flow cytometry. Western blot was used in protein inspection, and ELISA was used in inflammatory response evaluation. RESULTS: Compared with the control group, there were 229 up-regulated and 32 down-regulated genes in model group. We detected that FOXQ1 was down-regulated in the OA mice model, improved proliferation, and restrained apoptosis of chondrocytes. Over-expression of FOXQ1 could inhibit pyroptosis-related proteins and inflammatory cytokines, containing NLRP3, Caspase-1, GSDMD, IL-6, IL-18, and TNF-α, and in contrast, FOXQ1 silencing exerted the opposite trend. CONCLUSIONS: FOXQ1 may inhibit OA progression via down-regulating NLRP3-induced pyroptosis in the present study.


NLR Family, Pyrin Domain-Containing 3 Protein , Osteoarthritis , Animals , Mice , Apoptosis/genetics , Caspase 1/metabolism , Disease Models, Animal , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoarthritis/genetics , Pyroptosis
18.
Exp Eye Res ; 241: 109851, 2024 Apr.
Article En | MEDLINE | ID: mdl-38453039

The accumulation of oleic acid (OA) in the meibum from patients with meibomian gland dysfunction (MGD) suggests that it may contribute to meibomian gland (MG) functional disorder, as it is a potent stimulator of acne-related lipogenesis and inflammation in sebaceous gland. Therefore, we investigate whether OA induces lipogenesis and inflammasome activation in organotypic cultured mouse MG and human meibomian gland epithelial cells (HMGECs). Organotypic cultured mouse MG and HMGECs were exposed to OA or combinations with specific AMPK agonists 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Lipogenic status, ductal keratinization, squamous metaplasia, NLRP3/ASC/Caspase-1 inflammasome activation, proinflammatory cytokine IL-1ß production, and AMPK pathway phosphorylation in MG were subsequently examined by lipid staining, immunofluorescence staining, immunohistochemical staining, ELISA assay, and Western blot analyses. We found that OA significantly induced lipid accumulation, ductal keratinization, and squamous metaplasia in organotypic cultured MG, as evidenced by increased lipids deposition within acini and duct, upregulated expression of lipogenic proteins (SREBP-1 and HMGCR), and elevation of K10/Sprr1b. Additionally, OA induced NLRP3/ASC/Caspase-1 inflammasome activation, cleavage of Caspase-1, and production of downstream proinflammatory cytokine IL-1ß. The findings of lipogenesis and NLRP3-related proinflammatory response in OA-stimulated HMGECs were consistent with those in organotypic cultured MG. OA exposure downregulated phospho-AMPK in two models, while AICAR treatment alleviated lipogenesis by improving AMPK/ACC phosphorylation and SREBP-1/HMGCR expression. Furthermore, AMPK amelioration inhibited activation of the NLRP3/ASC/Caspase-1 axis and secretion of IL-1ß, thereby relieving the OA-induced proinflammatory response. These results demonstrated that OA induced lipogenic disorder and NLRP3 inflammasome activation in organotypic cultured mouse MG and HMGECs by suppressing the AMPK signaling pathway, indicating OA may play an etiological role in MGD.


Carcinoma, Squamous Cell , Inflammasomes , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Meibomian Glands/metabolism , AMP-Activated Protein Kinases/metabolism , Lipogenesis , Epithelial Cells/metabolism , Caspase 1/metabolism , Cytokines/metabolism , Metaplasia/metabolism , Carcinoma, Squamous Cell/metabolism , Interleukin-1beta/metabolism
19.
Cell Commun Signal ; 22(1): 187, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515158

BACKGROUND: Pyroptosis of the renal tubular epithelial cells (RTECs) and interstitial inflammation are central pathological characteristics of acute kidney injury (AKI). Pyroptosis acts as a pro-inflammatory form of programmed cell death and is mainly dependent on activation of the NLRP3 inflammasome. Previous studies revealed that acetyl-CoA synthetase 2 (ACSS2) promotes inflammation during metabolic stress suggesting that ACSS2 might regulate pyroptosis and inflammatory responses of RTECs in AKI. METHODS AND RESULTS: The expression of ACSS2 was found to be significantly increased in the renal epithelial cells of mice with lipopolysaccharide (LPS)-induced AKI. Pharmacological and genetic strategies demonstrated that ACSS2 regulated NLRP3-mediated caspase-1 activation and pyroptosis through the stimulation of the KLF5/NF-κB pathway in RTECs. The deletion of ACSS2 attenuated renal tubular pathological injury and inflammatory cell infiltration in an LPS-induced mouse model, and ACSS2-deficient mice displayed impaired NLRP3 activation-mediated pyroptosis and decreased IL-1ß production in response to the LPS challenge. In HK-2 cells, ACSS2 deficiency suppressed NLRP3-mediated caspase-1 activation and pyroptosis through the downregulation of the KLF5/NF-κB pathway. The KLF5 inhibitor ML264 suppressed NF-κB activity and NLRP3-mediated caspase-1 activation, thus protecting HK-2 cells from LPS-induced pyroptosis. CONCLUSION: Our results suggested that ACSS2 regulates activation of the NLRP3 inflammasome and pyroptosis by inducing the KLF5/NF-κB pathway in RTECs. These results identified ACSS2 as a potential therapeutic target in AKI.


Acute Kidney Injury , Sepsis , Animals , Mice , Acetyl Coenzyme A/metabolism , Acute Kidney Injury/metabolism , Caspase 1/metabolism , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Ligases/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Sepsis/complications , Sepsis/metabolism
20.
Elife ; 122024 Mar 18.
Article En | MEDLINE | ID: mdl-38497531

Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.


Gasdermins , Inflammasomes , Animals , Caspase 1/metabolism , Caspases/metabolism , Inflammasomes/metabolism , Amphibians , Reptiles , Birds
...